Localization of anionic phospholipids in Escherichia coli cells.
نویسندگان
چکیده
Cardiolipin (CL) is an anionic phospholipid with a characteristically large curvature and is of growing interest for two primary reasons: (i) it binds to and regulates many peripheral membrane proteins in bacteria and mitochondria, and (ii) it is distributed asymmetrically in rod-shaped cells and is concentrated at the poles and division septum. Despite the growing number of studies of CL, its function in bacteria remains unknown. 10-N-Nonyl acridine orange (NAO) is widely used to image CL in bacteria and mitochondria, as its interaction with CL is reported to produce a characteristic red-shifted fluorescence emission. Using a suite of biophysical techniques, we quantitatively studied the interaction of NAO with anionic phospholipids under physiologically relevant conditions. We found that NAO is promiscuous in its binding and has photophysical properties that are largely insensitive to the structure of diverse anionic phospholipids to which it binds. Being unable to rely solely on NAO to characterize the localization of CL in Escherichia coli cells, we instead used quantitative fluorescence microscopy, mass spectrometry, and mutants deficient in specific classes of anionic phospholipids. We found CL and phosphatidylglycerol (PG) concentrated in the polar regions of E. coli cell membranes; depletion of CL by genetic approaches increased the concentration of PG at the poles. Previous studies suggested that some CL-binding proteins also have a high affinity for PG and display a pattern of cellular localization that is not influenced by depletion of CL. Framed within the context of these previous experiments, our results suggest that PG may play an essential role in bacterial physiology by maintaining the anionic character of polar membranes.
منابع مشابه
Phosphatidic acid and N-acylphosphatidylethanolamine form membrane domains in Escherichia coli mutant lacking cardiolipin and phosphatidylglycerol.
The pgsA null Escherichia coli strain, UE54, lacks the major anionic phospholipids phosphatidylglycerol and cardiolipin. Despite these alterations the strain exhibits relatively normal cell division. Analysis of the UE54 phospholipids using negativeion electrospray ionization mass spectrometry resulted in identification of a new anionic phospholipid, N-acylphosphatidylethanolamine. Staining wit...
متن کاملAnionic Phospholipids Stabilize RecA Filament Bundles in Escherichia coli.
We characterize the interaction of RecA with membranes in vivo and in vitro and demonstrate that RecA binds tightly to the anionic phospholipids cardiolipin (CL) and phosphatidylglycerol (PG). Using computational models, we identify two regions of RecA that interact with PG and CL: (1) the N-terminal helix and (2) loop L2. Mutating these regions decreased the affinity of RecA to PG and CL in vi...
متن کاملMinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.
The Min proteins (MinC, MinD, and MinE) form a pole-to-pole oscillator that controls the spatial assembly of the division machinery in Escherichia coli cells. Previous studies identified that interactions of MinD with phospholipids positioned the Min machinery at the membrane. We extend these studies by measuring the affinity, kinetics, and ATPase activity of E. coli MinD, MinE, and MinDE bindi...
متن کاملCrosstalk between DnaA Protein, the Initiator of Escherichia coli Chromosomal Replication, and Acidic Phospholipids Present in Bacterial Membranes
Anionic (i.e., acidic) phospholipids such as phosphotidylglycerol (PG) and cardiolipin (CL), participate in several cellular functions. Here we review intriguing in vitro and in vivo evidence that suggest emergent roles for acidic phospholipids in regulating DnaA protein-mediated initiation of Escherichia coli chromosomal replication. In vitro acidic phospholipids in a fluid bilayer promote the...
متن کاملNADH oxidation in phospholipid-enriched cytoplasmic membrane vesicles from Escherichia coli.
NADH oxidation in Escherichia coli cytoplasmic membrane vesicles enriched in anionic phospholipids by de novo synthesis of lipid in the vesicles from acyl-CoA esters and sn-glycerol 3-phosphate has been studied. NADH-oxidase but not NADH-dehydrogenase activity was found to decrease during synthesis and accumulation of phospholipid in the vesicles. Density gradient fractionation showed that NADH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 196 19 شماره
صفحات -
تاریخ انتشار 2014